1.未来的新材料!懂行的请进!

2.吉林长春宇舶怎么分真

3.舜天船舶是军工股吗

4.金刚石钻头的配方

未来的新材料!懂行的请进!

高温合金市场分析_长春高温合金价格

现在的汽车制造业

主要用钢 铁 铝

这些材料会严重影响未来地球

可以说 楼主的想法非常好

我认为你设计的汽车首先要环保、轻质、节能的

所以我认为可以取代现有材料的

又具备以上特点

车身新材料的种类

高强度钢板

从前的高强度钢板,拉延强度虽高于低碳钢板,但延伸率只有后者的50%,故只适用于形状简单、延伸深度不大的零件。现在的高强度钢板是在低碳钢内加入适当的微量元素,经各种处理轧制而成,其抗拉强度高达420N/mm2,是普通低碳钢板的2~3倍,深拉延性能极好,可轧制成很薄的钢板,是车身轻量化的重要材料。到2000年,其用量已上升到50%左右。中国奇瑞汽车公司与宝钢合作,2001年在试制样车上使用的高强度钢用量为262kg,占车身钢板用量的46%,对减重和改进车身性能起到了良好的作用。

低合金高强度钢板的品种主要有含磷冷轧钢板、烘烤硬化冷轧钢板、冷轧双相钢板和高强度1F冷轧钢板等,车身设计师可根据板制零件受力情况和形状复杂程度来选择钢板品种。

含磷高强度冷轧钢板:含磷高强度冷轧钢板主要用于轿车外板、车门、顶盖和行李箱盖升板,也可用于载货汽车驾驶室的冲压件。主要特点为:具有较高强度,比普通冷轧钢板高15%~25%;良好的强度和塑性平衡,即随着强度的增加,伸长率和应变硬化指数下降甚微;具有良好的耐腐蚀性,比普通冷轧钢板提高20%;具有良好的点焊性能;

烘烤硬化冷轧钢板:经过冲压、拉延变形及烤漆高温时效处理,屈服强度得以提高。这种简称为BH钢板的烘烤硬化钢板既薄又有足够的强度,是车身外板轻量化设计首选材料之一;

冷轧双向钢板:具有连续屈服、屈强比低和加工硬化高、兼备高强度及高塑性的特点,如经烤漆后其强度可进一步提高。适用于形状复杂且要求强度高的车身零件。主要用于要求拉伸性能好的承力零部件,如车门加强板、保险杠等;

超低碳高强度冷轧钢板:在超低碳钢(C≤0.005%)中加入适量的钛或铌,以保证钢板的深冲性能,再添加适量的磷以提高钢板的强度。实现了深冲性与高强度的结合,特别适用于一些形状复杂而强度要求高的冲压零件。

轻量化迭层钢板

迭层钢板是在两层超薄钢板之间压入塑料的复合材料,表层钢板厚度为0.2~0.3mm,塑料层的厚度占总厚度的25%~65%。与具有同样刚度的单层钢板相比,质量只有57%。隔热防振性能良好,主要用于发动机罩、行李箱盖、车身底板等部件。

铝合金

与汽车钢板相比,铝合金具有密度小(2.7g/cm3)、比强度高、耐锈蚀、热稳定性好、易成形、可回收再生等优点,技术成熟。德国大众公司的新型奥迪A2型轿车,由于用了全铝车身骨架和外板结构,使其总质量减少了135kg,比传统钢材料车身减轻了43%,使平均油耗降至每百公里3升的水平。全新奥迪A8通过使用性能更好的大型铝铸件和液压成型部件,车身零件数量从50个减至29个,车身框架完全闭合(见图1)。这种结构不仅使车身的扭转刚度提高了60%,还比同类车型的钢制车身车重减少50%。由于所有的铝合金都可以回收再生利用,深受环保人士的欢迎。

根据车身结构设计的需要,用激光束压合成型工艺,将不同厚度的铝板或者用铝板与钢板复合成型,再在表面涂覆防腐蚀材料使其结构轻量化且具有良好的耐腐蚀性。

镁合金

镁的密度为1.8g/cm3,仅为钢材密度的35%,铝材密度的66%。此外它的比强度、比刚度高,阻尼性、导热性好,电磁屏蔽能力强,尺寸稳定性好,因此在航空工业和汽车工业中得到了广泛的应用。镁的储藏量十分丰富,镁可从石棉、白云石、滑石中提取,特别是海水的盐分中含 3.7%的镁。近年来镁合金在世界范围内的增长率高达20%。

铸造镁合金的车门由成型铝材制成的门框和耐碰撞的镁合金骨架、内板组成。另一种镁合金制成的车门,它由内外车门板和中间蜂窝状加强筋构成,每扇门的净质量比传统的钢制车门轻10kg,且刚度极高。随着压铸技术的进步,已可以制造出形状复杂的薄壁镁合金车身零件,如前、后挡板、仪表盘、方向盘等。

泡沫合金板

泡沫合金板由粉末合金制成,其特点是密度小,仅为0.4~0.7g/cm3,弹性好,当受力压缩变形后,可凭自身的弹性恢复原料形状。泡沫合金板种类繁多,除了泡沫铝合金板外,还有泡沫锌合金、泡沫锡合金、泡沫钢等,可根据不同的需要进行选择。由于泡沫合金板的特殊性能,特别是出众的低密度、良好的隔热吸振性能,深受汽车制造商的青睐。目前,用泡沫铝合金制成的零部件有发动机罩、行李箱盖等。

蜂窝夹芯复合板

蜂窝夹芯复合板是两层薄面板中间夹一层厚而极轻的蜂窝组成。根据夹芯材料的不同,可分为纸蜂窝、玻璃布蜂窝、玻璃纤维增强树脂蜂窝、铝蜂窝等;面板可以用玻璃钢、塑料、铝板和钢板等材料。由于蜂窝夹芯复合板具有轻质、比强度和比刚度高、抗振、隔热、隔音和阻燃等特点,故在汽车车身上获得较多应用,如车身外板、车门、车架、保险杠、座椅框架等。英国发明了一种以聚丙烯作芯,钢板为面板的薄夹层板用以替代钢制车身外板,使零件质量减轻了50%~60%,且易于冲压成型。

工程塑料

与通用塑料相比,工程塑料具有优良的机械性能、电性能、耐化学性、耐热性、耐磨性、尺寸稳定性等特点,且比要取代的金属材料轻、成型时能耗少。二十世纪七十年代起,以软质聚氯乙烯、聚氨酯为主的泡沫类、衬垫类、缓冲材料等塑料在汽车工业中被广泛用。福特公司开发的LTD试验车,塑料化后的车身取得了轻量化方面的明显成果(见表2)。

中国工程塑料工业普遍存在工艺落后、设备陈旧、规模小、品种少、质量不稳定的状况,而且价格高,缺乏市场竞争力。工程塑料在汽车上的应用仅相当于国外上世纪八十年代的水平。如上海桑塔纳轿车塑料用量仅为2.86kg/辆,红旗CA7228型轿车为2.4kg/辆,而日本轿车平均为14kg/辆,宝马则更高,为35.64kg/辆。但这种局面将很快被打破,由上海普利特复合材料有限公司投资新建、国内最大的汽车用高性能ABS工程塑料生产基地日前在上海建成投产。此项目引进了世界先进的工程塑料生成线和试验检测仪器等设备,形成了年产15,000吨高性能ABS工程塑料的能力。

高强度纤维复合材料

高强度纤维复合材料,特别是碳纤维复合材料(CFRP),因其质量小,而且具有高强度、高刚性,有良好的耐蠕变与耐腐蚀性,因而是很有前途的汽车用轻量化材料。碳纤维复合材料在汽车上的应用,美国开展的最好。

二十世纪八十年代后期,复合材料车身外覆件得到大量的应用和推广,如发动机罩、翼子板、车门、车顶板、导流罩、车厢后挡板等,甚至出现了全复合材料的卡车驾驶室和轿车车身。据统计,在欧美等国汽车复合材料的用量约占本国复合材料总产量的33%左右,并继续呈增长态势,复合材料作为汽车车身的外覆件来说,无论从设计还是生产制造、应用都已成熟,并已从车身外覆件的使用向汽车的内饰件和结构件方向发展。图2为法国SORA公司为雷诺汽车公司开发的全复合材料轿车车身和重型卡车驾驶室。上海通用柳州汽车公司和东风公司推出全复合材料车身的家庭用小轿车。

车身新材料应用的现状

目前,国内外车身轻量化的研究方向是开发具有较高强度的轻质高性能新材料及设计新的轻量化结构。通过多年的探索,已取得了新的进展。德国大众九十年代末开发的路波TDI车型就是用新设计、新材料、新工艺的综合成果。

TDI所有车身部件都是轻质金属制成的,包括前挡泥板、车门、发动机罩和尾门,其中尾门的金属外层是铝质,内板是镁制成的。汽车的内部设备许多也是轻质金属制成的,如,座椅的框架由铝制成,方向盘的内骨架是镁制成。乘客舱和发动机室之间组合隔板是铝质的。支撑结构通常也是由高强度的薄板金属制成的。

为解决新材料的防腐蚀保护和连接,大众用创新的冲孔铆接法、迭边压接、激光钎焊等技术。

路波TDI的自重为830kg,包括417kg(50.5%)的钢、136kg轻质金属(16.4%,包括3.7kg的镁)、116kg塑料(14.0%)。在保证车身抗扭刚度、使用寿命和安全性的前提下,车身的重量减轻了50kg,汽车的总重减轻了154kg。由于汽车自重大幅度减轻,使得百公里油耗降至2.99升,总能量消耗只是传统汽车的一半。这意味着二氧化碳的排放量也将减少一半,碳氢化合物的排放量降到四分之一,是典型的环保型轿车,也是世界上批量生产的最经济轿车之一。

新材料应用的发展趋势

新材料回收再用性的研究

研究汽车新材料的最终处置问题至关重要,从某种程度上讲,关系到它的生存与发展。目前,汽车上约占自重25%的材料无法回收再用,其中三分之一为各种塑料,三分之一为橡胶,还有三分之一为玻璃、纤维。鉴于这种情况,世界各国都花费大量的人力、物力进行材料的回收再生问题的研究。现在可以通过三种途径进行回收:颗粒回收,重新碾磨;化学回收,高温分解;能源回收,将废弃物作为燃料。

德国在回收塑料等材料的法规是世界上最为完善的,其管理方式非常明确,即首先是避免产生,然后才是“循环使用”和“最终处理”。1991年规定回收塑料中的60%必须是机械性回收,另有40%可以机械回收,也可以用填埋或能量回收的方式。通过十年的努力,现在的回收率已高达87%。日本是循环经济立法最全面的国家,其目的是建立一个“循环型社会”。为此,日本对废旧塑料的回收利用一直保持积极态度。此外,日本还大力支持以废塑料为主的工业垃圾发电事业。到2010年在全国建立150个废塑料发电设备。

减少材料的品种

未来汽车在工程塑料类型的选择上将会发生巨大的变化。目前汽车使用的塑料由几十种高分子材料组成,当前世界各大汽车公司致力于减少车用塑料的种类,并尽量使其通用化。这将有利于材料的回收再生和生态环境的保护。

降低成本

制约汽车车身新材料应用的重要因素是价格。作为主要新材料的高强度钢、玻璃纤维增强材料、铝和石墨增强,其成本分别为普通碳钢的1.1倍、3倍、4倍和20倍。所以只有大幅度降低这些新材料的制造成本,才可能使诸多新材料进入批量生产。如玻璃纤维增强材料将在成本上成为钢材的有力竞争者,虽然它的重量减轻有限,但价格却能为用户接受。石墨合成材料尽管性能良好,但因其成本居高不下,目前它在汽车工业上很难有所作为。

先进的制造工艺的研发

用新材料与先进的制造工艺是相辅相成的,汽车工业正在努力开发新的制造方法,对传统的工艺进行更新。例如:适用于轻量化设计的连接工艺今年来有所发展,如德国某汽车公司在大批生产的轿车上用CO2激光束焊接,与传统的焊接工艺相比,焊接成的高强度钢板车身的强度提高了50%。又如,一些复合材料的SMC壳体的材料较厚,大约为2.5~3mm,限制了轻量化的幅度。法国雷诺公司用新的A级表面精度的SMC模压技术和低密度填料,减薄了零件厚度,使轿车壳体重量比普通SMC工艺下降了30%。

车身设计方法的革命

据欧洲汽车界人士预测,在今后十年中,轿车自身质量还将减轻20%,除了大量用复合材料和轻质合金外,车身设计方法也将发生重大变化。

由于大量用新型材料,传统的车身结构及其设计方法可能不再适用,取而代之的是一种基于生物学增长规律的形状优化设计法,这种设计方法即能减少零件质量,又延长了零件的使用寿命。此外,用新的设计方法还能使车身零件数大幅度减少。如某车型的零件数已由400个减少到75个,质量减轻30%。美国克莱斯勒汽车公司尚未投放市场的概念车由于用了创新的优化设计法,使整车自重降至544kg。这说明轻量化设计具有极大的潜力。

吉林长春宇舶怎么分真

从宇舶表材质分辨手表真——碳

碳是地球上含量仅次于氧的第二大元素(约 18.5%)。如此巨大的含量,加上其有机化合物的多样性及在地球常温下形成聚合物的非凡能力,使得这种元素成为所有已知生命体、人体乃至钻石的化学基础。在宇舶表的制造中,我们利用碳获取碳纤维,这要归功于碳原子!碳发生结构重排进而得到编织状纤维并用树脂包围,用于制造表壳或部件。这种热分解人造工艺可以让我们获得非常坚固和轻盈的材料。碳纤维的重量还不到每立方米 2.6 g。这种材料广泛用于航天航空、军事、医药及其它高科技行业。实际上,碳纤维还赋予手表真正的现代化风格。

从宇舶表材质分辨手表真——陶瓷

在手表行业中谈到陶瓷时,人们当然不会想到陶罐什么的,而是在极高温度烧结的二氧化锆。其主要用途是人造移植器官、表壳、手链和永远保持锋利的厨房用刀。汽车发动机中用于优化燃油燃烧的氧传感器也是用氧化锆制成的。部分款式的宇舶表使用了高科技陶瓷材料制作表壳和表圈。由于非常坚硬牢固,因此更引人注意的应用是制造 F1 赛车和极限跑车的凸轮轴、制动盘。纯氧化锆是白色半透明的,但可与其它金属氧化物混合而变成黑色、**、蓝色或酒红色。(长春宇舶售后中心:长春市朝阳区西安大路727号中银大厦A座(旺进大厦)18层09室

从宇舶表材质分辨手表真——王金

王金是宇舶表对新型 18K 金的称呼。它独有的颜色甚至比传统的 5N 玫瑰金还要红。为了实现这一效果,我们的冶金学家提高了铜的含量并添加了铂金以稳定色泽和中和氧化。这种合金的具体成分属于最高机密。

从宇舶表材质分辨手表真——金

纯金较为柔软,用在首饰和大多数技术领域中磨损相当快。为了获得所需的物理属性,必须添加 25 -64%的其它金属(主要是铜和银,白金则是添加钯)。18K 金是表壳和其它高档首饰的标准用料,颜色有白色、**、玫瑰色和红色;后三种颜色是通过调节 25%非黄金组分中铜和银的比例而获得的。金是地球地壳中最稀有的元素之一

从宇舶表材质分辨手表真——钛

此种银色金属拥有卓越的耐腐蚀性,其强度重量比也高过所有其他金属,这两种特性使其格外受人青睐。它存在于多种矿藏之中,尤其多见于广泛分布在地壳和岩石圈的金红石和钛铁矿中。该元素几乎存在于所有形式的生命、岩石、水环境和土壤中。钛金属可与铁、铝、钒和钼等多种金属结合,打造出经久耐用、质地超轻的合金,以用于航空航天、军事、珠宝和其他领域。

从宇舶表材质分辨手表真——钨

也被称为钨锰铁,是一种化学元素。钨是一种铁灰色金属,存在于数种矿石中,包括钨锰铁矿和白钨矿。这种元素以其坚固的物理属性而著称,尤其是它的熔点是所有非合金金属中最高的,在所有元素中也仅次于碳。钨通常比较脆,在其原始状态下难以加工;不过如果是纯钨,那么就可以用钢锯切割。纯钨主要用于电气方面,而其化合物和合金应用广泛,最广为人知的是白炽灯泡的灯丝、X 射线管(作为灯丝和钨靶) 以及高温合金。

从宇舶表材质分辨手表真——不锈钢

不锈钢中含有较大比例的镍。不锈钢有着非常广泛的用途,尤其是在手表和首饰领域。不锈钢是以铁作为基底金属、加铬增强腐蚀防护、加镍提高机械强度的合金。

从宇舶表材质分辨手表真——锆

锆主要被用作耐火材料和遮光剂,但由于其出色的耐腐蚀性,也有少量用作合金添加剂。锆的名字来自于锆石矿物。它是一种有光泽、灰白色且坚固的过渡金属,和钛有点儿像。锆主要是从锆石矿物中获得的,锆石矿物是锆应用最重要的形式。锆可以形成多种有机物和有机金属化合物,比如二氧化锆和二氯二茂锆

从宇舶表材质分辨手表真——陶瓷合金

陶瓷合金是一种由陶瓷和金属材料组成的复合材料。制造陶瓷合金的目的是希望同时获得耐高温和高硬度等陶瓷的属性和抗塑料变形能力等金属的属性。金属用作氧化物、硼化物或碳化物的黏合剂。通常使用的金属元素有镍、钼和钴。陶瓷合金用于制造电阻器(尤其是电位计)、电容器和其它可能经历高温的电子元件。

舜天船舶是军工股吗

舜天船舶是船舶军工概念股

公司是国内领先的支线船舶出口商。截止2011年1月底,公司手持支线集装箱船订单量在国内船企中列第二名。公司的远洋支线机动船舶产品包括700TEU-2,000TEU系列集装箱船、30,000DWT以下多用途船和重吊船等;非机动船舶产品包括欧洲内河船、大型海洋运输驳船、海洋工程平台和驳船等。公司船舶产品全部外销,主要销往欧洲、美洲、非洲、东南亚等地区。 造船行业正处周期底部,未来有望逐渐回升。造船工业具有明显的周期性特征。2008年度金融危机使全球造船行业受到较大冲击。全球船市自2009年下半年以来有了较明显的复苏,2010年世界新接订单同比增长185.8%。2010年底手持订单量与2009年基本持平,也表明了企稳的迹象。世界经济的增长和国际化分工的不断加深,使得造船工业长期向好。 产品分化和集装箱化是海运行业的重要趋势

金刚石钻头的配方

金刚石钻头参数与钢筋砼的适应性研究

李 焰 王生福

摘 要 根据钢筋砼的特性,从理论分析结合实践经验合理选择了金刚石钻头的主要性能参数。GW2号配方对钢筋砼的适用性较好,胎体性能稳定,并选用了粒度为40~50目、浓度为45%的较高品级金刚石与该胎体相匹配,在生产使用中取得了较好的钻进效果。

关键词 金刚石钻头 钢筋砼 金刚石品级 浓度 粒度 胎体

Research on Adaptability of Parameters of Diamond Bit to Steel Reinforced Concrete

Li Yan, Wang Shengfu

(Institute of Exploration Techniques, Langfang, Hebei, 065000)

Abstract Based on the property of steel reinforced concrete, main parameters are determined by combining theoretical analysis with practice experience. Formula GW2 of matrix has good adaptabilily to steel reinforced concrete and its matrix property is stable, especially matched with better grade diamond of grain size 40~50 mesh and concentration 45%, so the penetration result is ideal in practice.

Key words steel reinforced concrete, grade of diamond, concentration, mesh size, matrix

金刚石钻头钻进效率的高低、寿命长短与被钻物质有着十分密切的关系。每一个性能好的钻头都是针对它所对应的岩石而言,也就是说在设计钻头时首先要考虑岩石的研磨性、单轴抗压强度、硬度等特性。岩石的研磨性是设计金刚石钻头胎体耐磨性的主要依据,是金刚石出刃的基本条件,岩石特性是设计钻头胎体的出发点。在建筑装修施工现场也要遵循这个原则,针对所钻钢筋砼的特性来选用合适的钻头。

1 胎体耐磨性与钢筋砼的适应性

金刚石以无与伦比的硬度和优良的机械力学性能使金刚石工具成为加工各种坚硬材料不可缺少的有效工具之一。在建筑施工中,越来越广泛地使用金刚石工具来钻切钢筋砼制品,但对金刚石钻切钢筋砼的研究学术报导很少,尤其金刚石钻头胎体耐磨性与钢筋砼适应性的研究就更少。我们对金刚石钻头胎体与钢筋砼的适应性进行了详细的分析与研究。

金刚石钻头碎岩过程,一方面使金刚石在高转速、较大压力下因摩擦产生高温,部分金刚石石墨化,部分金刚石受冲击剪切力的作用而碎落;另一方面胎体受岩石和岩粉的摩擦作用、冲洗液的冲蚀作用而被磨损。钻头在钻切钢筋砼时,钻进过程中胎体和金刚石均在磨损且具有合理的磨损速度,以使胎体与被钻物质相适应。当胎体磨损速度大于金刚石磨损速度时,将导致金刚石出刃过大而过早脱落,这反映了胎体耐磨性过低;当金刚石磨损速度小于胎体的磨损速度时,导致钻头不出刃甚至被抛光而出现打滑现象,在此种情况下即使给钻机加大压力,亦无法钻进,此时加压只能加大动力机的负载,导致动力机超载运转,这是较危险的。

因此,依据胎体的耐磨性与不同标号钢筋砼的研磨性和硬度的特征,金刚石钻头胎体可设计为中等研磨性胎体配方,即GW2号配方,此配方对砼的适用性较好,胎体性能稳定性好,且在较弱或较强研磨性砼钻进时,均具有较好的适应性。无论从金刚石钻头的研究制造,还是从使用选型来讲,GW2号胎体配方的耐磨性与钢筋砼的研磨性是相适应的。

今天用传统的胎体硬度表征方法来研究制造金刚石钻头已经很不适应科学技术迅速发展的需要了。在生产实践中发现,同属中等研磨性的胎体配方,但由于二者硬度值不同,其切割钢筋砼的效率、速度、寿命皆不同,反之胎体硬度值相同,由于配方、耐磨性不同,所取得的钻进效果亦不相同。所以我们不难解释多年来一些用户提出的一大问题,就是选用不同厂家生产的金刚石钻头,尽管硬度相同,金刚石参数基本相同,但使用效果大不相同,有的与钢筋砼适应,有的却不适应。实际上,问题的症结就在于虽然胎体硬度相同,但耐磨性不同,所以效果不一样。生产实践证明,我们研究胎体耐磨性与钢筋砼研磨性的适应性是必要的。

2 金刚石参数与钢筋砼的适应性

薄壁金刚石钻头与钢筋砼相适应,除了胎体的耐磨性和硬度之外,还必须合理选择金刚石参数与之匹配。金刚石强度、粒度和浓度直接影响钻头的钻进效率和使用寿命,但是金刚石强度、粒度和浓度的确定主要取决于钢筋砼的研磨性、强度和硬度。

2.1 金刚石品级对钻进钢筋砼效果的影响

我们在廊坊市某高层住宅楼钻切钢筋砼使用8只钻头(SMD型金刚石钻头6只,MBD8型金刚石钻头2只),钻头胎体工作层均为5 mm,胎体为GW2号配方,使用效果见表1。

表1 薄壁金刚石钻头在钢筋砼中钻进效果

编号 金刚石强度(kg.颗-1) 钻头直径/mm 个数/个 总进尺/m 时效/(m.h-1) 平均寿命/(m.个-1)

1 18 159 6 159 0.92 26.5

2 13 159 2 29.6 0.53 14.8

从表1可以看出,两种金刚石钻头的平均钻进时效和平均寿命相差较大。由此可见,由于钢筋砼抗压强度和硬度都较高,品级较低的金刚石在钻进中极易被磨钝,效果就有较大的差别。因此,只有尽量用高品级金刚石才能在钢筋砼钻进中取得好的效果。

2.2 金刚石浓度对钢筋砼钻进效果的影响

金刚石浓度是一个很重要的参数,尤其对钻进钢筋砼它显得更为重要。浓度太低,出露钻头底唇的金刚石太少,单颗金刚石钻进时负担太大,在新的金刚石还未出露之前它就过早地磨钝或崩刃脱落,使整个钻头失去钻进能力。反之,浓度过高,钻头底唇金刚石面积很大,单颗金刚石承受的压力很小,而钢筋砼的抗压强度和硬度很高,从而金刚石难以出刃,造成钻头无法进尺。所以,我们从实践与理论分析,对钻切钢筋砼选出了较合适的金刚石浓度,与一般钻切石材的钻头相比,钻切钢筋砼的钻头金刚石浓度要稍低,金刚石浓度减小后,胎体出露面积增大,胎体容易受到磨损,可以加速金刚石出刃,提高钻进效率。在钢筋砼钻进中,金刚石浓度与钻进时效见表2。

表2 金刚石浓度与钻进时效

编号 浓度/% 个数/个 总进尺/m 时效/(m.h-1) 平均寿命/(m.个-1)

1 25 1 11 0.63 11.0

2 45 4 106 1.10 26.5

3 50 6 153.6 0.96 25.6

4 75 1 6.7 0.38 没有用完

注:钻头直径120 mm,金刚石强度18 kg/颗。

从表2可以看出,同一种胎体配方,选用同样品级的金刚石,由于金刚石浓度不同,它们的钻进时效也不同,当浓度从25%~75%变化时,钻进钢筋砼的时效也随之有规律地变化。当浓度为45%~50%时时效最高,而高于或低于此值时 ,效果都显著下降。

2.3 金刚石粒度对钢筋砼钻进效果的影响

在对钢筋砼的钻进中,金刚石粒度应满足两个基本规律:一是在保证金刚石品级相同的情况下,宜用中粗粒度,有利于自锐作用;二是随着粒度的增大或减小变化金刚石浓度,这是因为质量大小相同的金刚石粗粒与细粒的总表面积不同,所以相同浓度金刚石的出露总面积亦不同。也就是说,细粒金刚石的出露总面积要比粗粒的大,单颗金刚石吃入被钻物质的压力就小。具体到钢筋砼来讲,如果选用较细粒度的金刚石,虽然金刚石出露的总面积增大了,但胎体出露面积相应减小,不易被磨损,产生钻进不进尺现象。因此在钻进钢筋砼时,我们选用40~50目粒度的金刚石,浓度为45%,在生产试验中取得了很好的效果。

3 结论

由于钢筋砼硬度高、强度大,尤其高标号砼结构致密,薄壁金刚石钻头在钻进钢筋砼时,条件十分恶劣,时效较低。通过研究和试验,我们认为,要提高薄壁金刚石钻头在钢筋砼中的钻进效率,必须合理选择钻头的主要性能参数:

(1)根据钢筋砼的特点,钻头胎体耐磨性应为中等,不能太软,否则会因胎体磨损快造成金刚石大量提前脱落引起时效的显著下降。反之若胎体耐磨性高,胎体难以磨损,金刚石不易出刃,单颗金刚石吃入被钻物质的深度很小,使钻头进尺缓慢,甚至不进尺。

(2)选用高品级的金刚石作为钻头孕镶料。

(3)用适应性较广的金刚石浓度,建议用45%为宜。

(4)金刚石粒度选用40~50目为好,但粒度的选择要与金刚石浓度、胎体耐磨性的选择相适应。

作者简介:李焰:女,1954年生,原地矿部勘探技术研究所,工程师;17年毕业于河北地质学院地质勘探专业;现从事薄壁金刚石工程钻机和金刚石制品的研究工作,曾主持过薄壁金刚石钻头研究课题。 地址:065000 河北省廊坊市金光道77号;电话:0316-2015312转2248。 王生福:原地矿部勘探技术研究所。

4 参考文献

1 刘广志.金刚石钻探手册.北京:地质出版社,1991.146~260.